Integrated Energy Planning and Pakistan’s Energy Future

A PBC Position Paper

Energy Expert Group

2011
ENERGY PANEL MEMBERS

Mr. Farooq Rahmatullah
Chairman Energy Expert Group – EAC
CHAIRMAN ENERGY PANEL – PAKISTAN ECONOMIC FORUM
Mr. Farooq Rahmatullah is a law graduate from University of Peshawar. He joined Burmah Shell Oil and Distribution Company in 1968 and worked in different capacities i.e. Chemicals, Human Resources, Marketing, Supply, Distribution, Retail, etc. Transferred to Shell International London in 1994.
In 2001 Mr. Farooq, was appointed as Chairman of Shell Companies in Pakistan and Managing Director of Shell Pakistan Limited. He has been a founding member of PAPCO (Pak Arab Pipeline Company). He retired from Shell on June 30, 2006. Mr. Farooq served as Director General, Civil Aviation Authority from 2006 till August 2008.
Mr. Farooq served as Chairman OGDCL and has been Chairman of Pakistan Refinery Limited (PRL) since June 2005. He was also the Chairman of LEADS Pakistan, founding member of Pakistan Human Development Fund, Director on the Board of Society for Sustainable Development, member of Resource Development Committee of Aga Khan University Hospital, member of National Commission of Government Reforms, member of Pakistan Stone Development Company, and member of Board of Trustees of Legends Trust formed by the Government of Sindh. He is also director on the Board of Faysal Bank.

Mr. Munsif Raza
SPECIALIST OIL & GAS - EXPLORATION & PRODUCTION (E & P)
Mr. Munsif Raza is a petroleum engineer with over 38 years of experience in the Oil & Gas exploration and production industry in Pakistan. After early employment years in Middle East in the E&P industry, Mr. Raza joined Pakistan Petroleum Limited and over the year rose to the position of Managing Director.
Mr. Raza continued to serve PPL as Managing Director for the next eleven (11) year before retiring from PPL in August 2008.
Mr. Raza has played a prominent role in promoting foreign investment in E&P sector in Pakistan through joint ventures with international oil companies. He was the member of the PPEPCA Executive Committee for eleven years and also served as its Chairman. He was also Chairman of the PIP board for the past two years

Mr. Mumtaz Hasan Khan
SPECIALIST OIL - DOWNSTREAM
Mr. Mumtaz H. Khan is currently the Chairman of Hascol Petroleum Limited, an Oil Marketing Company which was given marketing license in the year 2005. He has over 45 year experience in oil industry having started work in 1963 in Burmah Shell. In 1980, he moved to London UK, to start an oil trading company called Hascombe and traded crude and petroleum products over the period of 25 years. He has since then moved to Pakistan to manage Hascol Petroleum Limited, which has during the period of five year have been able to setup 165 retail outlets in all four provinces from Karachi to Landikotal. Hascol is in the process of setting up storage facilities at Shikarpur and Machike.
Mr. Abbas Bilgrami
HEAD FOCUS GROUP EAC ENERGY EXPERT GROUP
SPECIALIST LPG & ENERGY INFRASTRUCTURE
HEAD FOCUS GROUP ENERGY PANEL – PAKISTAN ECONOMIC FORUM

Mr. Bilgrami is the Managing Director of Progas Energy Limited; He got his first degree from Karachi University in Commerce, a second degree in Business Studies and an accountancy qualification from Concordia University, Canada.

Mr. Bilgrami is Director of Progas Energy Limited, a power generation and energy infrastructure company. Mr. Bilgrami has had extensive exposure in project development work and was actively involved in advising one of the world’s leading LPG marketing companies when they considered entering the Pakistan market several years ago. Progas has investments in the power sector and energy infrastructure sectors through a joint venture with Malaysian and Middle Eastern partners. The company has built Pakistan’s first fully integrated LPG and energy business with the largest import terminal and storage at Port Qasim Authority in Karachi and operations throughout the country.

Mr. Abbas Bilgrami worked with Deloitte Haskins in the U.K. in their management consultancy division before joining the Project Development Company of Sharjah as an investment analyst and worked with them managing their North American investments in the hydrocarbons industry. He set up their technology trading division in the UK and subsequently opened branch offices in Pakistan and Bangladesh.

Mr. Aftab Husain
SPECIALIST REFINING – DOWNSTREAM

Mr. Aftab Husain is a graduate Chemical Engineer. He joined Pakistan Refinery in 1978 and has had over 30 year of diversified experience with the refinery. As an engineer during his early years, he worked for Plant Operations, Oil Movement and Technical Services. In 1996, he completed his master and acquired degree in Master of Public Administration (MPA) from the Institute of Business Administration (IBA).

Holding a senior position, as a Manager and General Manager he has had various business functions reporting to him. Business functions that reported to him include Technical Services, Business Strategy, Plant Operations, Oil Movement, Supply, Security & Admin Services, Materials and Warehousing. His present profile as Deputy Managing Director is responsible for Refinery Operations, Supply/Commercial, Engineering & Maintenance and Government & External Relations.

Mr. Khalid Mansoor

Mr. Khalid Mansoor is the Chief Executive Officer of Engro Powergen Qadirpur Limited, Engro Powergen Limited and Sindh Engro Coal Mining Company. In his role as CEO, he is heading the companies which are involved in development & execution of various energy and power projects in Pakistan.

He has held various key assignments at Engro and with Esso Chemical, Canada including leading development and execution of various major expansion projects for Engro. He is currently a Director on the Boards of Engro Corporation, Engro Polymer & Chemicals Limited, Engro Powergen Limited and Sindh Engro Coal Mining Company Limited. He has also served as a Director on the Boards of Engro Foods (Pvt.) Limited, Engro Vopak Terminal Limited and Chairman of the Board of Engro Energy Limited in the recent past.
He has over 30 years of experience and expertise in Petrochemical & Energy Sectors in leading roles for mega size Projects Development, Execution, Management and Operations. Mr. Mansoor holds a Degree in Chemical Engineering with Distinction and honors.

MR. SOHAIL WAJAHAT H. SIDIQUI
POWER SECTOR SPECIALIST
Mr. Sohail Wajahat Siddiqui as the first Pakistani Head of Siemens Pakistan has propelled the company to grow by 233% providing a role model to attract foreign investment to Pakistan. Siemens Pakistan under the leadership of Mr. Siddiqui has played a formidable role in the phenomenal growth of the telecommunication sector by providing complete technical infrastructure to three out of five mobile network service providers. He also pioneered the introduction of SAP ERP solutions in Pakistan which has revolutionized and brought about transparency in the working of major Public and Private sector organizations including Audit Department of Government of Pakistan. Under his leadership Siemens Pakistan for the first time exported finished Engineering goods to Middle East and other parts of the world. He initiated the Siemens University Ambassador System Program at LUMS in establishing School of Science & Engineering and ongoing research collaboration of LUMS and Siemens in the area of IT.

Mr. Javed Akbar
Mr. Javed Akbar is ex CEO Engro VOPAK and is currently on the board of Engro and Dawood group companies. He started his career with Exxon Mobil and is a Chemical engineer by profession. He is also a member of the Energy Expert Group who wrote the Integrated Energy Plan 2009-2022 on behalf of the Ministry of Finance.

Mr. Imran Ahmed
DIRECTOR- INDUS DYEING & MFG. CO. LTD.
Working as chief executive of a profit center of the company- responsible for its Sales, Marketing, Procurement of all machines and materials and general management of one of its manufacturing plants.
B.Sc in Finance from University Of Illinois at Urbana-Champaign

Mr. Salman A. Madani
SECRETARY TO THE ENERGY PANEL – PAKISTAN ECONOMIC FORUM
Mr. Salman A. Madani is currently Brand Manager & Business Manager-COS at Hascol Petroleum Limited where he is responsible for all marketing activities of the company including managing company owned retail outlets. He has previously worked in the retail division helping Hascol establish a visible retail presence in the province of Sindh over a period of 3 years.
In 2007, he completed his master and acquired degree in Marketing from the Institute of Business Administration (IBA).
To provide a road map for Pakistan to achieve greater energy self sufficiency by pursuing policies that are sustainable, provide for energy security and conservation, and are environmentally friendly.

Integrated Energy Plan 2010-2025
INTRODUCTION

This document is a brief developed over several weeks of engagement and work by the Energy Panel of the Pakistan Business Council. The findings and recommendations were then debated and discussed by the Chairmen, CEO’s in an extraordinary encounter. The subsequent document which is at hand has been made more concise and is the ultimate distillation of this work. It is largely based on the Integrated Energy Plan developed by the Energy Expert Group in 2009 which was constituted by the Economic Advisory Council under the auspices of the Ministry of Finance. However it has benefitted from being updated and the input of the members of the Pakistan Business Council. We hope that this will be the catalyst for an informed and important engagement with the Government of Pakistan so that a more diverse, secure and clean energy future can be achieved.

The document after this introduction includes very concise proposals to overcome the existing energy crisis. These recommendations must be read in conjunction with the Integrated Energy Plan 2010-2025 which will be available as part of this Position Paper.

For nearly six decades, no Pakistani government has made any effort to prepare for the country’s energy requirements. As a consequence, Pakistan has been saddled with “weak institutions, inappropriate pricing policies and insufficient public sector investment.” The net result, according to the government’s figures, by 2030, energy demand in Pakistan will be almost 64 percent greater than projected supply. Unless Pakistan moves to address this shortfall, the country will inevitably pay a huge cost not only in an economic sense, but also in terms of serious social issues and slow progress towards the creation of a stable social and political society.

Most governments have resorted to ad hoc measures to deal with Pakistan’s energy needs and have failed to address deep-rooted structural problems in the energy sector. The government’s so-called strategy for placing the country on a sustainable path of development is, in fact, “no more than a long wish-list of projects and intentions.” Pakistan must develop a “comprehensive strategy” for meeting its energy needs over the next quarter century. Such a strategy would offer realistic approaches for addressing the widening energy supply-demand gap and, among many other things, would require greater political will than succeeding governments have displayed to date to overcome resistance to the construction of the dams that will enable the country to exploit its enormous hydroelectric potential. Considerable emphasis needs to be placed on the development and exploitation of new technologies, such as renewable energy, turning cellulose into energy (agricultural, industrial and domestic waste) and through energy efficiency and conservation measures as a means for Pakistan to meet its coming energy requirements.

Forty percent of Pakistani households are not connected to the electrical grid, over the next 20 years, the country’s overall demand for energy will increase by 350 percent. Whether these people should be connected to the electrical grid or be given off grid solutions is a matter that has never been sensibly debated or decided on. Succeeding governments have gone headlong in building distribution infrastructure indebting public sector utilities, allowing massive theft, not investing in upgrading and expanding cheap electricity production capacity. During this same period, the percentage of Pakistan’s total energy needs met from domestic sources will fall from 72 to 38 percent. There is a need to develop an integrated energy development plan combining energy imports, the development of indigenous energy resources, a more diversified energy mix, and programs emphasizing greater energy efficiency and better management. In the near term, gas imports via pipeline and LNG can deliver energy at relatively competitive prices. The government has in the past given a high priority to tapping the energy resources of Pakistan’s neighbors, several projects for the import of natural gas from the Middle East and Central Asia and of power from Tajikistan and Kyrgyzstan have been under consideration but have never really been consummated. Moving from the near to the medium term, Pakistan will need to develop the rich coal deposits of the Thar Desert, as well as nuclear power. The “cornerstone” of the government’s long-range policy,
involves a shift from a predominantly state-controlled industry to an arrangement where the private sector plays a leading role in the development and management of the country's energy program.

Having undertaken a study of various “energy futures”—alternative scenarios of growth and energy needs, based on a simple macro energy forecasting model between 2010 and 2025 in an economic environment characterized by low and medium growth rates and assuming adequate investment in Pakistan’s hydroelectric generation capacity it is most likely to produce sustained economic growth, especially if supported by substantial support from international agencies. The EEG has been suitably modest in the predictive capabilities of its model as it is felt that what takes place outside the energy sector has a huge impact on the country's energy future policies directly targeted at the energy sector. It appears indisputable that choices in the energy sector made today will have a major impact on whether Pakistan succeeds in generating high GDP growth rates a generation hence.

We remain optimistic, however, and believe that the role of the private sector will expand in the years ahead, as the government continues its policies of privatization and deregulation.

It is essential to institute appropriate accounting systems for energy demand and supply as a first step, followed by national efforts to tackle inefficiencies in energy generation and distribution. Large hydroelectric projects should be undertaken after low-cost conservation measures have been fully utilized. The government's current “supply-side approach” to energy has stifled environmental consciousness and efforts toward energy conservation while leading to massive investments in energy generation at the expense of ecological considerations. Above all, we should reconsider what constitutes a successful energy policy. It is important to challenge perceptions, for instance, that reaching the country’s energy extraction potential is necessarily a sign of achievement. Affordability, energy security, energy diversity, a sensible balance between fossil fuel and renewable coupled with energy efficiency and conservation and a recognition of the country’s carbon footprint all must surely be counterpoints to consider as well.

The centrality of secure and affordable sources of energy for Pakistan's future along with job generation, economic growth, and political stability all go hand-in-hand with plentiful and affordable energy supplies. Pakistan, by virtue of its location and natural endowments, has many technologically feasible options to meet its growing energy requirements. The challenge lies in establishing the commercial and political feasibility of these options, and in utilizing the country’s limited capital and execution capacity optimally.

There already exists widespread agreement on at least the broad outlines of an energy strategy for Pakistan. Pakistanis know what needs to be done. But solemn promises and soaring rhetoric will not get the job done. Preparing for Pakistan's energy needs over the next quarter century will require long-term vision, a national commitment widely shared among the country’s political and business leaders, inspired leadership sustained from one government to the next, and most of all, political will to make and carry out difficult choices. Pakistan—the country, not just the government of the day—needs to decide that muddling through is not enough. Pakistan, as a country, has to decide that it must get serious about creating an energy strategy, and then—and this is the hard part—about implementing it.

It is with this in mind that the Energy Expert Group, consisting of industry professionals has developed on a pro bono basis, over a period of one year the first ever Integrated Energy Plan. This exercise has provided the first comprehensive document which provides an integrated approach to the development of Pakistan’s energy industry. This document was developed after several months of consultation with local and international sectoral specialists, public and private sector stakeholders and with the Government of Pakistan. This plan has seen support from most sectors of the Government of Pakistan and its major international partners but it now requires implementation
in totality. We recommend having an integrated energy ministry which, with the help of the best professionals available in the field, should oversee the implementation of an integrated energy plan.

NOTE:

*1 – Sections of this introduction have been drawn from the results of work undertaken by several eminent scholars in 2007 on behalf of the Woodrow Wilson International Centre for Scholars which resulted in a book entitled Fueling the Future: Meeting Pakistan’s Energy Needs in the 21st Century.

The results of this book are very much in line with the findings of the Energy Expert Group who subsequently wrote the Integrated Energy Plan. This is the energy strategy that a number of these scholars proposed in 2007.

It is for the Government to seek the implementation of the Integrated Energy Plan by honest, dedicated, well recognized and eminent industry professionals.
Energy Mix

The objective of this proposed plan is to aim for greater self sufficiency and if the plan is implemented the energy mix by the year 2025 will be as follows projected on GDP growth 2.5 – 4%:

The proposed energy mix will maximize use of indigenous resources for meeting energy demand

Implications of business as usual

- Unless there is political will and resolve to implement an integrated energy plan the country will face growing crisis on the energy front
• With nominal GDP growth projections of 2.5 – 4% the energy consumption by the year 2025 would be 138 MMTOE which translates to a Power Requirement of 39,000 MW. Oil Requirement will be 34.5 MMTOE Gas Requirement 69 MMTOE

• The total energy import bill in 2025 at US$ 100/ bbl will be $62 billion*2

![2025 Energy Mix Outlook](image)

*2 Projections made by Goldman Sachs, Morgan Stanley and others have indicated that price of crude will be closer to US$ 200/ bbl by 2020. This will increase the import bill for Pakistan to US$ 124 billion under the ‘Business as Usual’ scenario.
Gas Allocation – Using Economic Criteria

- Price parity between competing fuels and across users
- Group gas consumers into the following two blocks:
 - Block A to include: Power generation & Industry.
 - Block B to include: Commercial, Domestic and CNG use.
- Priority allocation to, and within each Block to be determined by economic value, job creation, contribution to exports etc.
- In order to incentivize distribution companies to work on commercial considerations pricing mechanism should permit fair margins on gas selling price. Distribution companies to be fined if UFG's are greater than acceptable. Reduce UFG's by at least 50% from current levels.
- Merge transmission business of SSGC and SNGPL. Distribution operation to be separated from transmission.
- Subsidies to domestic users to be progressively eliminated.
- All gas water heaters to be converted to solar geysers.
- All Subsidies on gas to fertilizer industry to be systematically removed.
- Do not provide gas to every small village and town, off grid needs should be met by solar, LPG or other hybrid solutions.
- Privatization of gas distribution.
E & P – Maximizing Indigenous Resources

- Pricing (Local Gas & Oil Pricing)
 - Gas and oil pricing policies over the past two decades have not realized the full potential of this sector because Pakistan still has a very large unexplored sedimentary basin. No large international companies have bid for exploration in the last few bidding rounds.
 - Policies to be formulated for giving attractive incentives for the development of Tight and Shale Gas.

- Security & Legislative Problems
 - The provinces of Baluchistan and Khyber Pakhtunkwa are virtually inaccessible due to the prevailing law and order situation.
 - The crisis created in the follow up legislation of the 18th Amendment must be resolved as top priority as this issue has brought to a standstill decision making by the Government in E&P affairs.
 - Petroleum Policies announced in 2001, 2007 and 2009 failed to attract investment in the E&P sector. It is therefore recommended that the well head gas pricing should be based on 70% of a basket of imported crude price. This is in line with the 1997 Petroleum Policy price which gave great impetus to investment in oil and gas exploration. The pricing of this policy was later rescinded by later Governments.
 - The GOP should engage a world class consultant to evaluate the unconventional gas reserves in Pakistan and make the study available to potential investors.
 - To have a formula of making the local population as stakeholders.

Power sector – SMART Solutions & Remedies – Short to Midterm (One to Two Years)

1. Immediate upgrading/revamping plan for existing units will result in an additional 2,000 – 2,500 MW
2. Promote Sugar Industry to export excess energy to Grid (incentive tariff programs).
3. Network Capacity expansion. Network study of each DISCO to be done.
 Estimated cost of Network Study per DISCO: USD 40,000 – 50,000
4. “ENERGY CONSERVATION” programs to be implemented.
5. Swift measures to be taken to address both technical and administrative losses.
 Technical / administrative loss reduction. (Pak average~30%; benchmark~7%). We can save USD1bn by controlling non-technical losses in 3 years and invest this money in revamping.
6. Metering systems (prepaid / remote) to curtail administrative losses.
7. Utilization of indigenous engineering resources and infrastructure.
8. Encouraging investors as well as multilateral institutions to invest in Power Sector in Pakistan.

Estimated cost is approximately USD 2 billion with a payback on most of these investments occurring within one year.

Energy conservation program

- Fuel conservation.
- Replacement of inefficient and outlived thermal units with Combine Cycle technology using the existing infrastructure.
- Fuel Gas allocation to high efficiency (50%) combined cycle power plants instead of low efficiency (30%) steam power plants. Leading to at least 2,000 MW of additional power generation from the same quantum of gas. Thereby reducing circular debt and price reduction of electricity.
- Energy Audits.
- Media Campaign.

Efficient Load Management

- Establishing Load Dispatch Centre.
- Efficient Metering Management System.

Network Improvement

- Haphazard development of networks has resulted in bottlenecks.
- Continuous reinforcements of networks by adding and upgrading Grid Station / Transformers / Transmission Lines.

Creation of a single Governing Board to address all Energy issues. The recommendation of the Energy Expert Group is to have an integrated energy ministry which with the help of the best professionals available in the field should oversee the implementation of an integrated energy plan.

Power Sector - SMART Solutions & Remedies – Long term (Five years & beyond)

In view of depleting Gas reserves, need to move fast towards developing coal and hydro power plants. This will also reduce our dependence on imported fuel (furnace oil).

1. Pakistan has tremendous potential of Coal fired / Hydro power plants that need to be exploited. (Life Line for Pakistan Energy Planning).

2. Base load power plants (1000 -1500 MW) should be installed to reduce the energy gap.

 Base Load Power Plant’s estimated cost: 1.0 to 1.1 Million USD per MW
1. Existing fleet of low efficient steam turbine power plants using natural gas should be primarily used with Furnace Oil and Natural gas to be allocated for new most efficient power plants (~60% Combined Cycle Power Plant) (convert where ever possible).

2. Renewable energy resources should be realized to cater for peak demand.
 - Wind Power Plants
 - Solar Thermal Power Plants

The Estimated cost for implementation of the above would be Approximately USD 4-5 billion and will provide within the mid and long term a sustainable means to bridge the burgeoning energy gap that Pakistan faces with a strong emphasis on maximizing the use of indigenous resources in a most efficient manner. The benefits would be an additional 5,000 MW of power generation capacity.

The ultimate objective is through demand and supply side management to reduce demand through energy conservation and efficiency programmes while increasing supply through new and efficient plants and technologies.
Coal Sector – Project UPDATE & Recommendations

Thar Coal Potential

Thar Desert contains the world’s 7th largest coal reserves:

175 Billion Ton = 50 Billion TOE = 2000 TCF
Total Thar Coal Reserve More than Saudi Arabia & Iranian Oil Reserves
68 times higher than Pakistan's total gas reserves

Development of Block II alone would bring in investment of USD 12 Billion

Entire Thar Coal Reserves can be used to generate 100,000 MW of electricity for over 200 years

• Bankable Feasibility Study (BFS) for Thar Block II Coal Mining Project has been completed
• Technical, environmental and social viability of the Project has been confirmed meeting all International Standards
• Phase 1: 6.5 MMT/annum Coal Mine and 1200 MW Power Plant
• Total exploitable Lignite reserve of 1.57 Bn tons that can support 5,000 MW for 50 years
• Lignite quality better than being used in Greece & Germany for Power Generation
• GoS & GoP should develop & ensure timely availability of the needed infrastructure (roads, water, offtake and mining) to ensure that the Thar power and mining projects can be achieved within an acceptable time frame
• GoS to pursue EWG & GoP to ensure JEWG recommends to Govt. of China to instruct Chinese Financial Institutions for financing of Thar Projects
Renewable Energy Opportunities

- Pakistan can harness the potential of wind, hydel, solar and biomass to setup Renewable Energy Projects
- Pakistan’s renewable energy strategy should focus on renewable technologies that can add significant generation capacity at a competitive tariff

Hydro Power:

- Current installed capacity: 6555 MW (including 1,400 MW Run of the River)
- Realizable potential: 17,000 MW, of which 12,000 MW is reservoir based hydel and 5,000 MW is run of river based power generation

Wind Energy:

- Pakistan's Wind Energy potential is estimated at 50,000 MW
- AEDB has issued 96 LOIs (50 MW each) for wind power projects issues. Not a single project has achieved financial close to date

Recommendation:

- Pakistan should plan to increase hydel and wind power to 50% of electricity generation within the next decade

An Integrated Energy Ministry:

Have an integrated energy ministry which with the help of the best professionals available in the field should oversee the implementation of an integrated energy plan.

CONCLUSION

- Have an integrated energy ministry which with the help of the best professionals available in the field should oversee the implementation of an integrated energy plan.
- Capacity building of institutions within the Government & public sector companies.
- Resolution of Circular Debt - currently about Rs.300 billion.
- Implement steps to generate additional power from existing capacity - 2500 MW by life extension (to be implemented within 6-12 months)
- Price parity between competing fuels.
- All gas area and water heating should be progressively converted to solar passive PVC heaters to yield at least a further 200MSCFd or 1000 MW of additional power.
- Thar Coal – Make it Happen (2016)
- Deregulate Oil Sector.
- LNG – Make it Happen (18 months)
• E&P Sector- pricing and security issues to be resolved and implications of the 18th amendment.

FINANCIAL IMPACT OF IMPLEMENTING THE ABOVE PROPOSALS

• Moving from business as usual to implementing above recommendations will result in average saving of $15 billion per annum for the next 15 years.

• The total energy import bill in 2025 will be reduced from $62 billion to $28 billion.

• Implementation of the above will complement GDP growth by 2%

On calculations of $100/barrel this would mean savings of $30 billion in oil and $200 billion in import of gas over a fifteen year period. Total saving of $230 Billion.

Meaning an average saving of $15 Billion per annum

NOTE: on calculations of $100/barrel this would mean savings of $30 billion in oil and $200 billion in import of gas over a fifteen year period. Total saving of $230 Billion. This equals an average saving of $15 Billion per annum. The saving in 2025 alone will be approximately US$ 34 billion. However it is important to note that a number of studies indicate that price of crude is expected to increase substantially over the period of study. Some predict that the US$ 200/ bbl is expected by 2020.